Topological methods for the prescribed Webster Scalar Curvature problem on CR manifolds
Autor: | Ridha Yacoub, Mohameden Ould Ahmedou, Hichem Chtioui |
---|---|
Rok vydání: | 2010 |
Předmět: |
Unit sphere
media_common.quotation_subject Prescribed scalar curvature problem Contact geometry Mathematical analysis Webster scalar curvature Noncompact geometric variational problems Morse lemma Infinity Topology Manifold Morse index Computational Theory and Mathematics Mathematics::Differential Geometry Geometry and Topology Critical point at infinity Topological methods Analysis Scalar curvature media_common Mathematics |
Zdroj: | Differential Geometry and its Applications. 28(3):264-281 |
ISSN: | 0926-2245 |
DOI: | 10.1016/j.difgeo.2009.10.002 |
Popis: | We consider the existence of contact forms of prescribed Webster scalar curvature on a (2n+1)-dimensional CR compact manifold locally conformally CR equivalent to the standard unit sphere S2n+1 of Cn+1. We give some existence results, using dynamical and topological methods involving the study of the critical points at infinity of the associated noncompact variational problem. |
Databáze: | OpenAIRE |
Externí odkaz: |