Ruthenium-decorated vanadium pentoxide for room temperature ammonia sensing
Autor: | Neha Hebalkar, Shobha N. Birajdar, Parag V. Adhyapak, Sulabha K. Kulkarni, Satish K. Pardeshi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
Hydrogen General Chemical Engineering Inorganic chemistry Oxide Vanadium chemistry.chemical_element 02 engineering and technology General Chemistry 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences Dissociation (chemistry) 0104 chemical sciences Ruthenium chemistry.chemical_compound chemistry X-ray photoelectron spectroscopy Pentoxide Fourier transform infrared spectroscopy 0210 nano-technology |
Zdroj: | RSC advances. 9(49) |
ISSN: | 2046-2069 |
Popis: | Layer structured vanadium pentoxide (V2O5) microparticles were synthesized hydrothermally and successfully decorated by a facile wet chemical route, with ∼10–20 nm sized ruthenium nanoparticles. Both V2O5 and ruthenium nanoparticle decorated V2O5 (1%Ru@V2O5) were investigated for their suitability as resistive gas sensors. It was found that the 1%Ru@V2O5 sample showed very high selectivity and sensitivity towards ammonia vapors. The sensitivity measurements were carried out at 30 °C (room temperature), 50 °C and 100 °C. The best results were obtained at room temperature for 1%Ru@V2O5. Remarkably as short a response time as 0.52 s @ 130 ppm and as low as 9.39 s @ 10 ppm recovery time at room temperature along with high selectivity towards many gases and vapors have been noted in the 10 to 130 ppm ammonia concentration range. Short response and recovery time, high reproducibility, selectivity and room temperature operation are the main attributes of the 1%Ru@V2O5 sensor. Higher sensitivity of 1%Ru@V2O5 compared to V2O5 has been explained and is due to dissociation of atmospheric water molecules on 1%Ru@V2O5 as compared to bare V2O5 which makes hydrogen atoms available on Bronsted sites for ammonia adsorption and sensing. The presence of ruthenium with a thin layer of oxide is clear from X-ray photoelectron spectroscopy and that of water molecules from Fourier transform infrared spectroscopy. |
Databáze: | OpenAIRE |
Externí odkaz: |