Variations in the metabolome in response to disease activity of rheumatoid arthritis
Autor: | Carole Migné, Mélanie Pétéra, Jacques Tebib, Hubert Marotte, Martin Soubrier, Estelle Pujos Guillot, Thierry Lequerré, Zuzana Tatar, Philippe Gaudin |
---|---|
Přispěvatelé: | Rhumatologie, CHU Strasbourg, Unité de Nutrition Humaine - Clermont Auvergne (UNH), Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne (UCA), CHU Bois-Guillaume, U 1059, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon, Hospital and Clinical Research Program, Passerelle 2012 founding (Pfizer), Unité de Nutrition Humaine (UNH), Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université-Institut National de la Recherche Agronomique (INRA), CHU Clermont-Ferrand, CHU Grenoble, CHU Rouen, Normandie Université (NU), Physiopathologie et biothérapies des maladies inflammatoires et autoimmunes, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon (COMUE), Centre Hospitalier Universitaire de Lyon, Tatar, Zuzana, Institut National de la Recherche Agronomique (INRA)-Université d'Auvergne - Clermont-Ferrand I (UdA)-Clermont Université, ProdInra, Archive Ouverte |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Male rheumatoid arthritis Necrosis [SDV]Life Sciences [q-bio] Bioinformatics Mass Spectrometry drug response biomarkers Etanercept Arthritis Rheumatoid 0302 clinical medicine Orthopedics and Sports Medicine anti-TNF-alpha therapy ComputingMilieux_MISCELLANEOUS Chromatography Reverse-Phase [SDV.MHEP] Life Sciences [q-bio]/Human health and pathology facteur de nécrose tumorale Discriminant Analysis drug treatment échantillon de plasma Middle Aged Prognosis metabolomics 3. Good health Treatment Outcome Rheumatoid arthritis Antirheumatic Agents Alimentation et Nutrition Metabolome Tumor necrosis factor alpha Female medicine.symptom metabolomics and rheumatoid arthritis (RA) profil métabolique Research Article Adult medicine.medical_specialty anti-TNF therapy Médecine humaine et pathologie Disease activity 03 medical and health sciences Metabolomics Rheumatology Internal medicine medicine Humans Food and Nutrition In patient Aged 030203 arthritis & rheumatology business.industry Tumor Necrosis Factor-alpha Adalimumab biomarkers medicine.disease Infliximab Surgery [SDV.AEN] Life Sciences [q-bio]/Food and Nutrition 030104 developmental biology Human health and pathology business [SDV.AEN]Life Sciences [q-bio]/Food and Nutrition [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology |
Zdroj: | BMC Musculoskeletal Disorders BMC Musculoskeletal Disorders, BioMed Central, 2016, 17 (1), 7 p. ⟨10.1186/s12891-016-1214-5⟩ Arthritis and Rheumatology 2015 ACR/ARHP Annual Meeting 2015 ACR/ARHP Annual Meeting, Nov 2015, San-Francisco, United States BMC Musculoskeletal Disorders 1 (17), 7 p.. (2016) BMC Musculoskeletal Disorders, 2016, 17 (1), 7 p. ⟨10.1186/s12891-016-1214-5⟩ |
ISSN: | 1471-2474 |
DOI: | 10.1186/s12891-016-1214-5⟩ |
Popis: | Background Anti-Tumor Necrosis Factor (TNF) therapies are able to control rheumatoid arthritis (RA) disease activity and limit structural damage. Yet no predictive factor of response to anti-TNF has been identified. Metabolomic profile is known to vary in response to different inflammatory rheumatisms so determining it could substantially improve diagnosis and, consequently, prognosis. The aim of this study was to use mass spectrometry to determine whether there is variation in the metabolome in patients treated with anti-TNF and whether any particular metabolomic profile can serve as a predictor of therapeutic response. Methods Blood samples were analyzed in 140 patients with active RA before initiation of anti-TNF treatment and after 6 months of Anti-TNF treatment (100 good responders and 40 non-responders). Plasma was deproteinized, extracted and analyzed by reverse-phase chromatography–QToF mass spectrometry. Extracted and normalized ions were tested by univariate and ANOVA analysis followed by partial least-squares regression-discriminant analysis (PLS-DA). Orthogonal Signal Correction (OSC) was also used to filter data from unwanted non-related effects. Disease activity scores (DAS 28) obtained at 6 months were correlated with metabolome variation findings to identify a metabolite that is predictive of therapeutic response to anti-TNF. Results After 6 months of anti-TNF therapy, 100 patients rated as good responders and 40 patients as non-responders according to EULAR criteria. Metabolomic investigations suggested two different metabolic fingerprints splitting the good-responders group and the non-responders group, without differences in anti-TNF therapies. Univariate analysis revealed 24 significant ions in positive mode (p |
Databáze: | OpenAIRE |
Externí odkaz: |