CycleGAN denoising of extreme low-dose cardiac CT using wavelet-assisted noise disentanglement

Autor: Jawook Gu, Dong Hyun Yang, Tae Seong Yang, Jong Chul Ye
Rok vydání: 2020
Předmět:
Zdroj: Medical image analysis. 74
ISSN: 1361-8423
Popis: In electrocardiography (ECG) gated cardiac CT angiography (CCTA), multiple images covering the entire cardiac cycle are taken continuously, so reduction of the accumulated radiation dose could be an important issue for patient safety. Although ECG-gated dose modulation (so-called ECG pulsing) is used to acquire many phases of CT images at a low dose, the reduction of the radiation dose introduces noise into the image reconstruction. To address this, we developed a high performance unsupervised deep learning method using noise disentanglement that can effectively learn the noise patterns even from extreme low dose CT images. For noise disentanglement, we use a wavelet transform to extract the high-frequency signals that contain the most noise. Since matched low-dose and high-dose cardiac CT data are impossible to obtain in practice, our neural network was trained in an unsupervised manner using cycleGAN for the extracted high frequency signals from the low-dose and unpaired high-dose CT images. Once the network is trained, denoised images are obtained by subtracting the estimated noise components from the input images. Image quality evaluation of the denoised images from only 4% dose CT images was performed by experienced radiologists for several anatomical structures. Visual grading analysis was conducted according to the sharpness level, noise level, and structural visibility. Also, the signal-to-noise ratio was calculated. The evaluation results showed that the quality of the images produced by the proposed method is much improved compared to low-dose CT images and to the baseline cycleGAN results. The proposed noise-disentangled cycleGAN with wavelet transform effectively removed noise from extreme low-dose CT images compared to the existing baseline algorithms. It can be an important denoising platform for low-dose CT.
Databáze: OpenAIRE