Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development
Autor: | Marianne Terndrup Pedersen, Susanne M. Kooistra, Anne Laugesen, Daniel G. Hayward, Kristian Helin, Jens Vilstrup Johansen, Aliaksandra Radzisheuskaya, Karl Agger, Jakob Nilsson |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
CHROMATIN Jumonji Domain-Containing Histone Demethylases DISTINCT Biology Methylation General Biochemistry Genetics and Molecular Biology Histones Mice 03 medical and health sciences Histone demethylation Animals Epigenetics Promoter Regions Genetic Induced pluripotent stem cell Kdm4 SPECIFICATION Molecular Biology development Embryonic Stem Cells Mice Knockout Genetics General Immunology and Microbiology epigenetics histone demethylation General Neuroscience LYSINE DEMETHYLASE RECOGNITION MOUSE EMBRYO Promoter Articles Embryonic stem cell Chromatin 030104 developmental biology GROUND-STATE embryonic structures Knockout mouse HISTONE DEMETHYLASES TRIMETHYLATION Histone Demethylases transcription EMBRYONIC STEM-CELLS |
Zdroj: | The EMBO Journal, 35(14), 1550-1564. Wiley |
ISSN: | 1460-2075 0261-4189 |
Popis: | Chromatin-associated proteins are essential for the specification and maintenance of cell identity. They exert these functions through modulating and maintaining transcriptional patterns. To elucidate the functions of the Jmjd2 family of H3K9/H3K36 histone demethylases, we generated conditional Jmjd2a/Kdm4a, Jmjd2b/Kdm4b and Jmjd2c/Kdm4c/Gasc1 single, double and triple knockout mouse embryonic stem cells (ESCs). We report that while individual Jmjd2 family members are dispensable for ESC maintenance and embryogenesis, combined deficiency for specifically Jmjd2a and Jmjd2c leads to early embryonic lethality and impaired ESC self-renewal, with spontaneous differentiation towards primitive endoderm under permissive culture conditions. We further show that Jmjd2a and Jmjd2c both localize to H3K4me3-positive promoters, where they have widespread and redundant roles in preventing accumulation of H3K9me3 and H3K36me3. Jmjd2 catalytic activity is required for ESC maintenance, and increased H3K9me3 levels in knockout ESCs compromise the expression of several Jmjd2a/c targets, including genes that are important for ESC self-renewal. Thus, continual removal of H3K9 promoter methylation by Jmjd2 demethylases represents a novel mechanism ensuring transcriptional competence and stability of the pluripotent cell identity. |
Databáze: | OpenAIRE |
Externí odkaz: |