Identification of cell surface markers and establishment of monolayer differentiation to retinal pigment epithelial cells

Autor: Sofie Westman, Pankaj Kumar, Sandra Petrus-Reurer, Emma Lardner, Fredrik Lanner, Helder André, Anders Kvanta, Iyadh Douagi, Monica Aronsson, Alvaro Plaza Reyes, Sara Padrell Sánchez, Hammurabi Bartuma, Anna Falk, Emeline F. Nandrot
Přispěvatelé: Karolinska Institutet [Stockholm], Karolinska University Hospital [Stockholm], Institut de la Vision, Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut National de la Santé et de la Recherche Médicale (INSERM), This work was supported by grants from the Ming Wai Lau Center for Reparative Medicine, Knut and Alice Wallenberg Foundation, Centre for Innovative Medicine, Swedish Research Council, Ragnar Söderberg Foundation, Wallenberg Academy Fellow, Swedish Foundation for Strategic Research, Stockholm County Council (ALF project), Karolinska Institute, Ögonfonden and Cronqvist Foundation, Strategic Research Area (SRA) Stem Cells and Regenerative Medicine, Crown Princess Margareta’s Foundation for the Visually Impaired, The ARMEC Lindeberg Foundation, The Ulla och Ingemar Dahlberg Foundation, and King Gustav V and Queen Victoria Foundation. This study was performed at the Live Cell Imaging unit/Nikon Center of Excellence, BioNut, KI, supported by Knut and Alice Wallenberg Foundation, Swedish Research Council, Centre for Innovative Medicine and the Jonasson donation. Flow cytometry analysis and cell sorting were performed at the MedH Flow Cytometry core facility, supported by KI/SLL. Sequencing was performed at the ESCG at Science for Life Laboratory (funded by the Knut and Alice Wallenberg Foundation and the Swedish Research Council) with assistance from SNIC/Uppsala Multidisciplinary Center for Advanced Computational Science for assistance with massively parallel sequencing and access to the UPPMAX computational infrastructure. Open access funding provided by Karolinska Institute., Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nature Communications, Vol 11, Iss 1, Pp 1-15 (2020)
Nature Communications
Nature Communications, Nature Publishing Group, 2020, 11 (1), pp.1609. ⟨10.1038/s41467-020-15326-5⟩
ISSN: 2041-1723
DOI: 10.1038/s41467-020-15326-5
Popis: In vitro differentiation of human pluripotent stem cells into functional retinal pigment epithelial (RPE) cells provides a potentially unlimited source for cell based reparative therapy of age-related macular degeneration. Although the inherent pigmentation of the RPE cells have been useful to grossly evaluate differentiation efficiency and allowed manual isolation of pigmented structures, accurate quantification and automated isolation has been challenging. To address this issue, here we perform a comprehensive antibody screening and identify cell surface markers for RPE cells. We show that these markers can be used to isolate RPE cells during in vitro differentiation and to track, quantify and improve differentiation efficiency. Finally, these surface markers aided to develop a robust, direct and scalable monolayer differentiation protocol on human recombinant laminin-111 and −521 without the need for manual isolation.
Databáze: OpenAIRE