Microscopic observation of two-level systems in a metallic glass model

Autor: Felix C. Mocanu, Ludovic Berthier, Simone Ciarella, Dmytro Khomenko, David R. Reichman, Camille Scalliet, Francesco Zamponi
Přispěvatelé: Laboratoire de physique de l'ENS - ENS Paris (LPENS), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Systèmes Désordonnés et Applications, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL, Laboratoire Charles Coulomb (L2C), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Dipartimento di Fisica [Roma La Sapienza], Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Columbia University [New York], Department of Applied Mathematics and Theoretical Physics [Cambridge] (DAMTP), Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS), University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM), ANR-10-EQPX-0029,EQUIP@MESO,Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale(2010), European Project: 723955,GlassUniversality
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Journal of Chemical Physics
Journal of Chemical Physics, 2023, 158 (1), pp.014501. ⟨10.1063/5.0128820⟩
ISSN: 0021-9606
1089-7690
Popis: The low-temperature quasi-universal behavior of amorphous solids has been attributed to the existence of spatially-localized tunneling defects found in the low-energy regions of the potential energy landscape. Computational models of glasses can be studied to elucidate the microscopic nature of these defects. Recent simulation work has demonstrated the means of generating stable glassy configurations for models that mimic metallic glasses using the swap Monte Carlo algorithm. Building on these studies, we present an extensive exploration of the glassy metabasins of the potential energy landscape of a variant of the most widely used model of metallic glasses. We carefully identify tunneling defects and reveal their depletion with increased glass stability. The density of tunneling defects near the experimental glass transition temperature appears to be in good agreement with experimental measurements.
17 pages, 12 figures
Databáze: OpenAIRE