Genomic, Transcriptional and Mutational Analysis of the Mouse microphthalmia Locus
Autor: | Neal G. Copeland, Thomas M Glaser, Eiríkur Steingrímsson, Rannveig Magnusdottir, Jón Hallsteinn Hallsson, Gunnar J. Gunnarsson, Nancy A. Jenkins, Hope O. Sweet, M. Lynn Lamoreux, Colin A. Hodgkinson, Jack Favor |
---|---|
Rok vydání: | 2000 |
Předmět: |
Male
Transcription Genetic Molecular Sequence Data Biology Microphthalmia Mice Exon Genes Overlapping Genetics medicine Animals STXBP1 Gene Alleles Mice Inbred C3H Microphthalmia-Associated Transcription Factor Base Sequence integumentary system Alternative splicing Tietz syndrome Exons Microphthalmia-associated transcription factor medicine.disease DNA-Binding Proteins Mice Inbred C57BL body regions Alternative Splicing Mutagenesis Female Transcription Factors Research Article IRF4 |
Zdroj: | Genetics. 155:291-300 |
ISSN: | 1943-2631 |
DOI: | 10.1093/genetics/155.1.291 |
Popis: | Mouse microphthalmia transcription factor (Mitf) mutations affect the development of four cell types: melanocytes, mast cells, osteoclasts, and pigmented epithelial cells of the eye. The mutations are phenotypically diverse and can be arranged in an allelic series. In humans, MITF mutations cause Waardenburg syndrome type 2A (WS2A) and Tietz syndrome, autosomal dominant disorders resulting in deafness and hypopigmentation. Mitf mice thus represent an important model system for the study of human disease. Here we report the complete exon/intron structure of the mouse Mitf gene and show it to be similar to the human gene. We also found that the mouse gene is transcriptionally complex and is capable of generating at least 13 different Mitf isoforms. Some of these isoforms are missing important functional domains of the protein, suggesting that they might play an inhibitory role in Mitf function and signal transduction. In addition, we determined the molecular basis for six microphthalmia mutations. Two of the mutations are reported for the first time here (Mitf mi-enu198 and Mitf mi-x39), while the others (Mitf mi-ws, Mitf mi-bws, Mitf mi-ew, and Mitf mi-di) have been described but the molecular basis for the mutation not determined. When analyzed in terms of the genomic and transcriptional data presented here, it is apparent that these mutations result from RNA processing or transcriptional defects. Interestingly, three of the mutations (Mitf mi-x39, Mitf mi-bws, and Mitf mi-ws) produce proteins that are missing important functional domains of the protein identified in in vitro studies, further confirming a biological role for these domains in the whole animal. |
Databáze: | OpenAIRE |
Externí odkaz: |