Control of spontaneous activity patterns by inhibitory signaling in the developing visual cortex
Autor: | Gerrit J. Houwen, Alexandra H. Leighton, Paloma P. Maldonado, Christian Lohmann, Fred de Winter, Juliette E. Cheyne |
---|---|
Rok vydání: | 2020 |
Předmět: |
Nervous system
0303 health sciences Biology Cell recruitment Inhibitory postsynaptic potential 03 medical and health sciences Sensory input 0302 clinical medicine Visual cortex medicine.anatomical_structure Somatostatin medicine Excitatory postsynaptic potential Neuroscience 030217 neurology & neurosurgery 030304 developmental biology |
DOI: | 10.1101/2020.02.21.959262 |
Popis: | SummaryDuring early development, even before the senses are active, bursts of activity travel across the nervous system. This spontaneously generated activity drives the refinement of synaptic connections, preparing young networks for patterned sensory input. Synaptic fine-tuning relies not only on the presence of spontaneous activity, but also on the specific characteristics of these activity patterns, such as their frequency, amplitude and synchronicity. Here, we provide evidence that these crucial characteristics are shaped by the relative balance of excitation and inhibition, where patterns with distinct characteristics have different excitatory/inhibitory ratios. Inhibition can control whether cells participate during a spontaneous event, as pharmacogenetic suppression of the somatostatin (SST) expressing subtype of inhibitory interneurons increased cell recruitment and lateral spread of events. |
Databáze: | OpenAIRE |
Externí odkaz: |