Niven’s Theorem

Autor: Adam Naumowicz, Artur Korniłowicz
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Formalized Mathematics, Vol 24, Iss 4, Pp 301-308 (2016)
ISSN: 1898-9934
1426-2630
Popis: Summary This article formalizes the proof of Niven’s theorem [12] which states that if x/π and sin(x) are both rational, then the sine takes values 0, ±1/2, and ±1. The main part of the formalization follows the informal proof presented at Pr∞fWiki (https://proofwiki.org/wiki/Niven’s_Theorem#Source_of_Name). For this proof, we have also formalized the rational and integral root theorems setting constraints on solutions of polynomial equations with integer coefficients [8, 9].
Databáze: OpenAIRE