Bayesian approach increases accuracy when selecting cowpea genotypes with high adaptability and phenotypic stability

Autor: Paulo Eduardo Teodoro, A. dos Santos, A. M. Correa, Francilene Amaral da Silva, Edvaldo Sagrilo, Laís Mayara Azevedo Barroso, Gessi Ceccon, Moysés Nascimento, Francisco Eduardo Torres, Clibas Correa
Přispěvatelé: L. M. A. BARROSO, Universidade Federal de Viçosa, P. E. TEODORO, Universidade Estadual de Mato Grosso do Sul, M. NASCIMENTO, Universidade Federal de Viçosa, F. E. TORRES, Universidade Estadual de Mato Grosso do Sul, A. DOS SANTOS, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brasil, A. M. CORRÊA, Universidade Estadual de Mato Grosso do Sul, EDVALDO SAGRILO, CPAMN, C. C. G. CORRÊA, Universidade Estadual de Mato Grosso do Sul, F. A. SILVA, Universidade Estadual de Mato Grosso do Sul, GESSI CECCON, CPAO.
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA-Alice)
Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
LOCUS Repositório Institucional da UFV
Universidade Federal de Viçosa (UFV)
instacron:UFV
Popis: This study aimed to verify that a Bayesian approach could be used for the selection of upright cowpea genotypes with high adaptability and phenotypic stability, and the study also evaluated the efficiency of using informative and minimally informative a priori distributions. Six trials were conducted in randomized blocks, and the grain yield of 17 upright cowpea genotypes was assessed. To represent the minimally informative a priori distributions, a probability distribution with high variance was used, and a meta-analysis concept was adopted to represent the informative a priori distributions. Bayes factors were used to conduct comparisons between the a priori distributions. The Bayesian approach was effective for selection of upright cowpea genotypes with high adaptability and phenotypic stability using the Eberhart and Russell method. Bayes factors indicated that the use of informative a priori distributions provided more accurate results than minimally informative a priori distributions.
Databáze: OpenAIRE