The Dirac Operator on Generalized Taub-NUT Spaces
Autor: | Andrei Moroianu, Sergiu Moroianu |
---|---|
Rok vydání: | 2011 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Conjecture Spinor FOS: Physical sciences 58J50 58J20 Statistical and Nonlinear Physics Mathematical Physics (math-ph) Base (topology) Dirac operator Manifold Euclidean distance General Relativity and Quantum Cosmology symbols.namesake Differential Geometry (math.DG) Line bundle Cone (topology) FOS: Mathematics symbols Mathematics::Symplectic Geometry Mathematical Physics Mathematics |
Zdroj: | Communications in Mathematical Physics. 305:641-656 |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-011-1263-4 |
Popis: | We find sufficient conditions for the absence of harmonic $L^2$ spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author. Comment: Final version, 16 pages |
Databáze: | OpenAIRE |
Externí odkaz: |