VPSPACE and a Transfer Theorem over the Reals

Autor: Sylvain Perifel, Pascal Koiran
Přispěvatelé: Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL)
Rok vydání: 2009
Předmět:
Zdroj: computational complexity. 18:551-575
ISSN: 1420-8954
1016-3328
DOI: 10.1007/s00037-009-0269-1
Popis: We introduce a new class VPSPACE of families of polynomials. Roughly speaking, a family of polynomials is in VPSPACE if its coefficients can be computed in polynomial space. Our main theorem is that if (uniform, constant-free) VPSPACE families can be evaluated efficiently then the class PAR of decision problems that can be solved in parallel polynomial time over the real numbers collapses to P. As a result, one must first be able to show that there are VPSPACE families which are hard to evaluate in order to separate over the reals P from NP, or even from PAR.
Comment: Full version of the paper (appendices of the first version are now included in the text)
Databáze: OpenAIRE