Tavis-Cummings models and their quasi-exactly solvable Schrödinger Hamiltonians
Autor: | Javier Negro, T. Mohamadian, Luis Miguel Nieto, Hossein Panahi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics
Quantum optics 010102 general mathematics Complex system General Physics and Astronomy Invariant (physics) Quarkonium 01 natural sciences Schrödinger equation symbols.namesake 0103 physical sciences symbols 0101 mathematics 010306 general physics Hamiltonian (quantum mechanics) Subspace topology Schrödinger's cat Mathematical physics |
Zdroj: | UVaDOC. Repositorio Documental de la Universidad de Valladolid Consejo Superior de Investigaciones Científicas (CSIC) |
ISSN: | 2190-5444 |
DOI: | 10.1140/epjp/i2019-12753-4 |
Popis: | We study in detail the relationship between the Tavis-Cummings Hamiltonian of quantum optics and a family of quasi-exactly solvable Schrodinger equations. The connection between them is established through the biconfluent Heun equation. We found that each invariant n-dimensional subspace of Tavis-Cummings Hamiltonian corresponds either to n potentials, each with one known solution, or to one potential with n known solutions. Among these Schrodinger potentials the quarkonium and the sextic oscillator appear. |
Databáze: | OpenAIRE |
Externí odkaz: |