Nondegeneracy of heteroclinic orbits for a class of potentials on the plane

Autor: Panayotis Smyrnelis, Jacek Jendrej
Přispěvatelé: Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Université Sorbonne Paris Nord, Basque Center for Applied Mathematics (BCAM), Basque Center for Applied Mathematics
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Applied Mathematics Letters
Applied Mathematics Letters, Elsevier, In press
Applied Mathematics Letters, Elsevier, In press, 124, ⟨10.1016/j.aml.2021.107681⟩
ISSN: 0893-9659
DOI: 10.1016/j.aml.2021.107681⟩
Popis: In the scalar case, the nondegeneracy of heteroclinic orbits is a well-known property, commonly used in problems involving nonlinear elliptic, parabolic or hyperbolic P.D.E. On the other hand, Schatzman proved that in the vector case this assumption is generic, in the sense that for any potential W : R m → R , m ≥ 2 , there exists an arbitrary small perturbation of W , such that for the new potential minimal heteroclinic orbits are nondegenerate. However, to the best of our knowledge, nontrivial explicit examples of such potentials are not available. In this paper, we prove the nondegeneracy of heteroclinic orbits for potentials W : R 2 → [ 0 , ∞ ) that can be written as W ( z ) = | f ( z ) | 2 , with f : ℂ → ℂ a holomorphic function.
Databáze: OpenAIRE