Aberrant Activation of p38 MAP Kinase-Dependent Innate Immune Responses Is Toxic to Caenorhabditis elegans
Autor: | Robert H. Dowen, Hilary K. Cheesman, Jose Thekkiniath, Annie L. Conery, Read Pukkila-Worley, Rhonda L. Feinbaum |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
MAPK/ERK pathway C. elegans genetics MAP Kinase Signaling System Cellular homeostasis Gene Expression Protein Serine-Threonine Kinases genetics of immunity QH426-470 p38 Mitogen-Activated Protein Kinases 03 medical and health sciences 0302 clinical medicine Immune system RNA interference Genetics Animals host-pathogen interactions Caenorhabditis elegans Caenorhabditis elegans Proteins Molecular Biology innate immunity Genetics (clinical) Alleles Disease Resistance Innate immune system biology MAP kinase kinase kinase immune regulation Genetic Variation biochemical phenomena metabolism and nutrition biology.organism_classification Immunity Innate 3. Good health Cell biology Enzyme Activation 030104 developmental biology Phenotype Mutation RNA Interference 030217 neurology & neurosurgery Genetic screen |
Zdroj: | G3: Genes, Genomes, Genetics, Vol 6, Iss 3, Pp 541-549 (2016) G3: Genes|Genomes|Genetics |
ISSN: | 2160-1836 |
DOI: | 10.1534/g3.115.025650 |
Popis: | Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans. |
Databáze: | OpenAIRE |
Externí odkaz: |