How to build a yeast nucleus

Autor: Christophe Zimmer, Hua Wong, Jean-Michel Arbona
Přispěvatelé: Imagerie et Modélisation, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), We acknowledge funding by Institut Pasteur, Fondation pour la Recherche Médicale (Equipe FRM), and Agence Nationale de la Recherche (grants ANR-09-PIRI-0024, ANR-11-MONU-020—02, ANR-10-INTB-1401)., We thank Martin Kupiec for providing the repair efficiency data used in Figure 3, Ghislain Cabal for the trajectory data used in Figure 2, and Emmanuelle Fabre for comments., ANR-10-INTB-1401,RNAtrans,Visualisation de molécules uniques d'ARNm et de leur topologie afin d'étudier la traduction locale dans les neurones(2010), ANR-09-PIRI-0024,Chromodyn(2009), ANR-11-MONU-0020,ProbAlg,Algorithmes efficients pour modèles réalistes à grand échelle : développements fondamentaux et applications(2011), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
MESH: Cell Nucleus
chromosome dynamics
DNA repair
Saccharomyces cerevisiae
Locus (genetics)
homologous recombination
Computational biology
chro- mosome dynamics
DNA sequencing
MESH: Chromatin
Chromosome conformation capture
MESH: Homologous Recombination
03 medical and health sciences
chemistry.chemical_compound
homologous recom- bination
budding yeast
nucleolus
030304 developmental biology
Genetics
0303 health sciences
genome architecture
biology
Extra View
030302 biochemistry & molecular biology
MESH: Models
Biological

Cell Biology
biology.organism_classification
polymer physics
MESH: Saccharomyces cerevisiae
Chromatin
computational model
chemistry
chromosome structure
[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie
chromosome conformation capture
MESH: Cell Nucleolus
Homologous recombination
DNA
Zdroj: Nucleus
Nucleus, 2013, 4 (5), pp.361-366. ⟨10.4161/nucl.26226⟩
Nucleus, Taylors and Francis, 2013, 4 (5), pp.361-366. ⟨10.4161/nucl.26226⟩
ISSN: 1949-1042
1949-1034
DOI: 10.4161/nucl.26226⟩
Popis: International audience; Biological functions including gene expression and dna repair are affected by the 3d architecture of the genome, but the underlying mechanisms are still unknown. notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular dna sequences. the budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and dna contact frequencies. we recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. this model ignores the dna sequence information except for specific constraints at the centromeres, telomeres and the ribo-somal dna (rdna). despite its simplicity , the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromo-somal and subchromosomal scales. here, we also illustrate the model's ability to reproduce observed features of chromatin movements. our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of dna-specific factors or epigen-etic modifications. in addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje