How to build a yeast nucleus
Autor: | Christophe Zimmer, Hua Wong, Jean-Michel Arbona |
---|---|
Přispěvatelé: | Imagerie et Modélisation, Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), We acknowledge funding by Institut Pasteur, Fondation pour la Recherche Médicale (Equipe FRM), and Agence Nationale de la Recherche (grants ANR-09-PIRI-0024, ANR-11-MONU-020—02, ANR-10-INTB-1401)., We thank Martin Kupiec for providing the repair efficiency data used in Figure 3, Ghislain Cabal for the trajectory data used in Figure 2, and Emmanuelle Fabre for comments., ANR-10-INTB-1401,RNAtrans,Visualisation de molécules uniques d'ARNm et de leur topologie afin d'étudier la traduction locale dans les neurones(2010), ANR-09-PIRI-0024,Chromodyn(2009), ANR-11-MONU-0020,ProbAlg,Algorithmes efficients pour modèles réalistes à grand échelle : développements fondamentaux et applications(2011), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
MESH: Cell Nucleus
chromosome dynamics DNA repair Saccharomyces cerevisiae Locus (genetics) homologous recombination Computational biology chro- mosome dynamics DNA sequencing MESH: Chromatin Chromosome conformation capture MESH: Homologous Recombination 03 medical and health sciences chemistry.chemical_compound homologous recom- bination budding yeast nucleolus 030304 developmental biology Genetics 0303 health sciences genome architecture biology Extra View 030302 biochemistry & molecular biology MESH: Models Biological Cell Biology biology.organism_classification polymer physics MESH: Saccharomyces cerevisiae Chromatin computational model chemistry chromosome structure [SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie chromosome conformation capture MESH: Cell Nucleolus Homologous recombination DNA |
Zdroj: | Nucleus Nucleus, 2013, 4 (5), pp.361-366. ⟨10.4161/nucl.26226⟩ Nucleus, Taylors and Francis, 2013, 4 (5), pp.361-366. ⟨10.4161/nucl.26226⟩ |
ISSN: | 1949-1042 1949-1034 |
DOI: | 10.4161/nucl.26226⟩ |
Popis: | International audience; Biological functions including gene expression and dna repair are affected by the 3d architecture of the genome, but the underlying mechanisms are still unknown. notably, it remains unclear to what extent nuclear architecture is driven by generic physical properties of polymers or by specific factors such as proteins binding particular dna sequences. the budding yeast nucleus has been intensely studied by imaging and biochemical techniques, resulting in a large quantitative data set on locus positions and dna contact frequencies. we recently described a quantitative model of the interphase yeast nucleus in which chromosomes are represented as passively moving polymer chains. this model ignores the dna sequence information except for specific constraints at the centromeres, telomeres and the ribo-somal dna (rdna). despite its simplicity , the model accounts for a large majority of experimental data, including absolute and relative locus positions and contact frequency patterns at chromo-somal and subchromosomal scales. here, we also illustrate the model's ability to reproduce observed features of chromatin movements. our results strongly suggest that the dynamic large-scale architecture of the yeast nucleus is dominated by statistical properties of randomly moving polymers with a few sequence-specific constraints, rather than by a large number of dna-specific factors or epigen-etic modifications. in addition, we show that our model accounts for recently measured variations in homologous recombination efficiency, illustrating its potential for quantitatively understanding functional consequences of nuclear architecture. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |