Popis: |
In recent years, developing dopant-free carrier-selective contacts, instead of heavily doped Si layer (either externally or internally), for crystalline silicon (c-Si) solar cells have attracted considerable interests with the aims to reduce parasitic light absorption and fabrication cost. However, the stability still remains a big challenge for dopant-free contacts, especially when thermal treatment is involved, which limits their industrial adoption. In this study, a perovskite material ZnTiO combining with an ultrathin (~1 nm) SiO film and Al layer is used as an electron-selective contact, forming an isotype heterojunction with n-type c-Si. The perovskite/c-Si heterojunction solar cells exhibit a performance-enhanced effect by post-metallization annealing when the annealing temperature is 200-350 °C. Thanks to the post-annealing treatment, an impressive efficiency of 22.0% has been demonstrated, which is 3.5% in absolute value higher than that of the as-fabricated solar cell. A detailed material and device characterization reveal that post annealing leads to the diffusion of Al into ZnTiO film, thus doping the film and reducing its work function. Besides, the coverage of SiO is also improved. Both these two factors contribute to the enhanced passivation effect and electron selectivity of the ZnTiO -based contact, and hence improve the cell performance. |