Correlation between intestinal BMP2, IFNγ, and neural death in experimental infection with Trypanosoma cruzi
Autor: | Simone G. Fonseca, Marcos Vinicius da Silva, Juliana Reis Machado, José Rodrigues do Carmo Neto, Patrícia Resende Alo Nagib, Arthur Wilson Florencio da Costa, Yarlla Loyane Lira Braga, Milton Adriano Pelli de Oliveira, Mara Rúbia Nunes Celes |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Male
Physiology Quantitative Parasitology Bone Morphogenetic Protein 2 Parasitemia Mice Medical Conditions Animal Cells Immune Physiology Medicine and Health Sciences Intestinal Mucosa Immune Response Myenteric plexus Protozoans Trypanosoma Cruzi Neurons Innate Immune System Multidisciplinary biology Megacolon Eukaryota Interleukin-10 Intestines Medicine Cytokines Anatomy Cellular Types Research Article Chagas disease Trypanosoma Colon Science Immunology Myenteric Plexus Gastroenterology and Hepatology Bone morphogenetic protein Bone morphogenetic protein 2 Proinflammatory cytokine Interferon-gamma Signs and Symptoms medicine Parasitic Diseases Animals Chagas Disease Trypanosoma cruzi Inflammation Protozoan Infections Tumor Necrosis Factor-alpha Organisms Biology and Life Sciences Cell Biology Molecular Development medicine.disease biology.organism_classification Parasitic Protozoans Gastrointestinal Tract Mice Inbred C57BL Disease Models Animal Cellular Neuroscience Immune System Parasitology Clinical Medicine Digestive System Homeostasis Neuroscience Developmental Biology |
Zdroj: | PLoS ONE PLoS ONE, Vol 16, Iss 2, p e0246692 (2021) |
ISSN: | 1932-6203 |
Popis: | Megacolon is one of the main late complications of Chagas disease, affecting approximately 10% of symptomatic patients. However, studies are needed to understand the mechanisms involved in the progression of this condition. During infection by Trypanosoma cruzi (T. cruzi), an inflammatory profile sets in that is involved in neural death, and this destruction is known to be essential for megacolon progression. One of the proteins related to the maintenance of intestinal neurons is the type 2 bone morphogenetic protein (BMP2). Intestinal BMP2 homeostasis is directly involved in the maintenance of organ function. Thus, the aim of this study was to correlate the production of intestinal BMP2 with immunopathological changes in C57Bl/6 mice infected with the T. cruzi Y strain in the acute and chronic phases. The mice were infected with 1000 blood trypomastigote forms. After euthanasia, the colon was collected, divided into two fragments, and a half was used for histological analysis and the other half for BMP2, IFNγ, TNF-α, and IL-10 quantification. The infection induced increased intestinal IFNγ and BMP2 production during the acute phase as well as an increase in the inflammatory infiltrate. In contrast, a decreased number of neurons in the myenteric plexus were observed during this phase. Collagen deposition increased gradually throughout the infection, as demonstrated in the chronic phase. Additionally, a BMP2 increase during the acute phase was positively correlated with intestinal IFNγ. In the same analyzed period, BMP2 and IFNγ showed negative correlations with the number of neurons in the myenteric plexus. As the first report of BMP2 alteration after infection by T. cruzi, we suggest that this imbalance is not only related to neuronal damage but may also represent a new route for maintaining the intestinal proinflammatory profile during the acute phase. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |