The scaling limit of random simple triangulations and random simple quadrangulations

Autor: Louigi Addario-Berry, Marie Albenque
Přispěvatelé: McGill University = Université McGill [Montréal, Canada], Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), ANR-12-JS02-0001,CARTAPLUS,Combinatoire des cartes et applications(2012), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Annals of Probability
Annals of Probability, Institute of Mathematical Statistics, 2017, 45 (5), pp.2767-2825. ⟨10.1214/16-AOP1124⟩
Ann. Probab. 45, no. 5 (2017), 2767-2825
ISSN: 0091-1798
2168-894X
DOI: 10.1214/16-AOP1124⟩
Popis: Let $M_n$ be a simple triangulation of the sphere $S^2$, drawn uniformly at random from all such triangulations with n vertices. Endow $M_n$ with the uniform probability measure on its vertices. After rescaling graph distance on $V(M_n)$ by $(3/(4n))^{1/4}$, the resulting random measured metric space converges in distribution, in the Gromov-Hausdorff-Prokhorov sense, to the Brownian map. In proving the preceding fact, we introduce a labelling function for the vertices of $M_n$. Under this labelling, distances to a distinguished point are essentially given by vertex labels, with an error given by the winding number of an associated closed loop in the map. We establish similar results for simple quadrangulations.
Comment: 47 pages, 10 figures Revised argument in section 6, section 4 rewritten
Databáze: OpenAIRE