Analyticity domain of a Quantum Field Theory and Accelero-summation

Autor: Pierre J. Clavier, Marc P. Bellon
Přispěvatelé: Laboratoire de Physique Théorique et Hautes Energies (LPTHE), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
High Energy Physics - Theory
Renormalization
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
Complex system
FOS: Physical sciences
Acceleration (differential geometry)
Borel summation
field theory
01 natural sciences
Alien calculus
High Energy Physics - Phenomenology (hep-ph)
Accelero-summation
0103 physical sciences
0101 mathematics
Quantum field theory
field theory: renormalization
Mathematical Physics
Mathematical physics
Mathematics
Laplace transform
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
010102 general mathematics
Laplace
Statistical and Nonlinear Physics
Accelero–summation
Mathematical Physics (math-ph)
Function (mathematics)
Borel transformation
Borel transform
analytic properties
High Energy Physics - Phenomenology
High Energy Physics - Theory (hep-th)
[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]
Domain (ring theory)
010307 mathematical physics
Zdroj: Lett.Math.Phys.
Lett.Math.Phys., 2019, 109 (9), pp.2003-2011. ⟨10.1007/s11005-019-01172-0⟩
Popis: From 't Hooft's argument, one expects that the analyticity domain of an asymptotically free quantum field theory is horned shaped. In the usual Borel summation, the function is obtained through a Laplace transform and thus has a much larger analyticity domain. However, if the summation process goes through the process called acceleration by Ecalle, one obtains such a horn shaped analyticity domain. We therefore argue that acceleration, which allows to go beyond standard Borel summation, must be an integral part of the toolkit for the study of exactly renormalisable quantum field theories. We sketch how this procedure is working and what are its consequences.
Comment: 6 pages
Databáze: OpenAIRE