Clique Is Hard on Average for Regular Resolution
Autor: | Susanna F. de Rezende, Ilario Bonacina, Jakob Nordström, Massimo Lauria, Albert Atserias, Alexander A. Razborov |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. ALBCOM - Algorismia, Bioinformàtica, Complexitat i Mètodes Formals |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
FOS: Computer and information sciences
Edge density Clique Erdos-Rényi random graphs Algorismes 0102 computer and information sciences Average complexity Computational Complexity (cs.CC) Clique (graph theory) 01 natural sciences Upper and lower bounds Combinatorics Artificial Intelligence k-clique Multiplicative constant 0101 mathematics Complexitat computacional Mathematics Random graphs Regular resolution Proof complexity Grafs Teoria de 010102 general mathematics Resolution (electron density) Graph Running time Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat [Àrees temàtiques de la UPC] Computational complexity Computer Science - Computational Complexity 010201 computation theory & mathematics Hardware and Architecture Control and Systems Engineering Exponent Graph (abstract data type) Resolution Software Algorithms Information Systems |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Scopus-Elsevier Recercat. Dipósit de la Recerca de Catalunya instname Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing STOC Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing-STOC 2018 |
Popis: | We prove that for k ≪ 4√n regular resolution requires length nΩ(k) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional nΩ(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs. The first, second, and fourth authors were supported by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme/ERC grant agreement no. 648276 AUTAR. The third and fifth authors were supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement no. 279611 as well as by Swedish Research Council grants 621-2012-5645 and 2016-00782, and the second author did part of this work while at KTH Royal Institute of Technology supported by the same grants. The last author was supported by the Russian Foundation for Basic Research. |
Databáze: | OpenAIRE |
Externí odkaz: |