Gradient Hölder regularity for parabolic normalized p(x,t)-Laplace equation
Autor: | Chao Zhang, Yuzhou Fang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Laplace's equation
Spacetime Applied Mathematics 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs 01 natural sciences 010101 applied mathematics Mathematics - Analysis of PDEs Differential game FOS: Mathematics 0101 mathematics Viscosity solution Analysis Analysis of PDEs (math.AP) Mathematics |
Zdroj: | Journal of Differential Equations. 295:211-232 |
ISSN: | 0022-0396 |
Popis: | We consider the interior Holder regularity of spatial gradient of viscosity solution to the parabolic normalized p ( x , t ) -Laplace equation u t = ( δ i j + ( p ( x , t ) − 2 ) u i u j | D u | 2 ) u i j with some suitable assumptions on p ( x , t ) , which arises naturally from a two-player zero-sum stochastic differential game with probabilities depending on space and time. |
Databáze: | OpenAIRE |
Externí odkaz: |