Residual intersections and core of modules

Autor: Alessandra Costantini, Louiza Fouli, Jooyoun Hong
Rok vydání: 2023
Předmět:
Zdroj: Journal of Algebra. 629:227-246
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2023.03.035
Popis: We introduce the notion of residual intersections of modules and prove their existence. We show that projective dimension one modules have Cohen-Macaulay residual intersections, namely they satisfy the relevant Artin-Nagata property. We then establish a formula for the core of orientable modules satisfying certain homological conditions, extending previous results of Corso, Polini, and Ulrich on the core of projective one modules. Finally, we provide examples of classes of modules that satisfy our assumptions.
Databáze: OpenAIRE