Coupling Mesoscopic Boltzmann Transport Equation and Macroscopic Heat Diffusion Equation for Multiscale Phonon Heat Conduction
Autor: | Weizheng Cheng, P.-O. Chapuis, Ali Alkurdi |
---|---|
Přispěvatelé: | Centre d'Energétique et de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Shanghai Jiao Tong University [Shanghai], ANR-16-CE09-0023,TIPTOP,Pointes hautement sensibles pour la microscopie thermique à l'échelle nanométrique(2016), European Project: 604668,EC:FP7:NMP,FP7-NMP-2013-LARGE-7,QUANTIHEAT(2013), European Project: 766853,H2020-FETOPEN-1-2016-2017,EFINED(2018) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Multiscale
Materials science Phonon 02 engineering and technology 01 natural sciences Boltzmann equation Condensed Matter::Materials Science Condensed Matter::Superconductivity 0103 physical sciences General Materials Science 010302 applied physics Coupling Mesoscopic physics Phonon heat conduction Condensed matter physics 021001 nanoscience & nanotechnology Condensed Matter Physics Thermal conduction Atomic and Molecular Physics and Optics Mechanics of Materials [SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] Condensed Matter::Strongly Correlated Electrons Heat equation Discrete Ordinate Method 0210 nano-technology |
Zdroj: | Nanoscale and Microscale Thermophysical Engineering Nanoscale and Microscale Thermophysical Engineering, 2020, 24 (3-4), pp.150-167. ⟨10.1080/15567265.2020.1836095⟩ Nanoscale and Microscale Thermophysical Engineering, Taylor & Francis, 2020, 24 (3-4), pp.150-167. ⟨10.1080/15567265.2020.1836095⟩ |
ISSN: | 1556-7265 1556-7273 |
DOI: | 10.1080/15567265.2020.1836095⟩ |
Popis: | International audience; Phonon heat conduction has to be described by the Boltzmann transport equation (BTE) when sizes or sources are comparable to or smaller than the phonon mean free paths (MFPs). When domains much larger than MFPs are to be treated or when regions with large and small MFPs coexist, the computation time associated with full BTE treatment becomes large, calling for a multiscale strategy to describe the total domain and decreasing the computation time. Here, we describe an iterative method to couple the BTE, under the Equation of Phonon Radiative Transfer approximation solved by means of the deterministic Discrete Ordinate Method, to a Finite-Element Modelling commercial solver of the heat equation. Small-size elements are embedded in domains where the BTE is solved, and the BTE domains are connected to a domain where large-size elements are located and where the heat equation is applied. It is found that an overlapping zone between the two types of domains is required for convergence, and the accuracy is analysed as a function of the size of the BTE domain. Conditions for fast convergence are discussed, leading to the computation time being divided by more than five on a study case in 2D Cartesian geometry. The simple method could be generalized to other types of solvers of the Boltzmann and heat equations. |
Databáze: | OpenAIRE |
Externí odkaz: |