Propagation of minima for nonlocal operators

Autor: Isabeau Birindelli, Giulio Galise, Hitoshi Ishii
Rok vydání: 2022
Předmět:
DOI: 10.48550/arxiv.2208.08164
Popis: In this paper we state some sharp maximum principle, i.e. we characterize the geometry of the sets of minima for supersolutions of equations involving the $k$-\emph{th fractional truncated Laplacian} or the $k$-\emph{th fractional eigenvalue} which are fully nonlinear integral operators whose nonlocality is somehow $k$-dimensional.
Comment: 13 pages
Databáze: OpenAIRE