Bielliptic modular curves $X_0^*(N)$ with square-free levels

Autor: Josep González Rovira, Francesc Bars
Rok vydání: 2018
Předmět:
Zdroj: Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
DOI: 10.48550/arxiv.1812.11746
Popis: Let $N\geq 1$ be a square-free integer such that the modular curve $X_0^*(N)$ has genus $\geq 2$. We prove that $X_0^*(N)$ is bielliptic exactly for $19$ values of $N$, and we determine the automorphism group of these bielliptic curves. In particular, we obtain the first examples of nontrivial $Aut(X_0^*(N))$ when the genus of $X_0^*(N)$ is $\geq 3$. Moreover, we prove that the set of all quadratic points over $\mathbb{Q}$ for the modular curve $X_0^*(N)$ with genus $\geq 2$ and $N$ square-free is not finite exactly for $51$ values of $N$.
Databáze: OpenAIRE