The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations
Autor: | Didier M. Roche, Gerrit Lohmann, Nathaelle Bouttes, Ruza F. Ivanovic, Kenji Izumi, Xiaoxu Shi, Rumi Ohgaito, Deepak Chandan, Lauren Gregoire, Marie Kapsch, Jessica E. Tierney, Evgeny Volodin, Christopher J. Poulsen, Uwe Mikolajewicz, Sam Sherriff-Tadano, Marcus Lofverstrom, Polina Morozova, André Paul, Jiang Zhu, Masa Kageyama, Fanny Lhardy, Tristan Vadsaria, Sandy P. Harrison, W. Richard Peltier, Paul J. Valdes, Juan M. Lora, Ayako Abe-Ouchi, Allegra N. LeGrande, Aurélien Quiquet |
---|---|
Přispěvatelé: | Earth Sciences, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Modélisation du climat (CLIM), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading (UOR), Max Planck Institute for Meteorology (MPI-M), Max-Planck-Gesellschaft, University of Arizona, Yale University [New Haven], Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
010504 meteorology & atmospheric sciences
Stratigraphy Climate change 010502 geochemistry & geophysics Environmental protection 01 natural sciences Environmental pollution TD169-171.8 Paleoclimatology GE1-350 Precipitation SDG 14 - Life Below Water [SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environment 0105 earth and related environmental sciences [SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere Global and Planetary Change Coupled model intercomparison project Paleontology Environmental sciences TD172-193.5 13. Climate action Climatology Paleoclimate Modelling Intercomparison Project Polar amplification Environmental science Climate model Global cooling |
Zdroj: | Climate of the Past, 17(3), 1065-1089. European Geosciences Union Climate of the Past Climate of the Past, European Geosciences Union (EGU), 2021, 17 (3), pp.1065-1089. ⟨10.5194/cp-17-1065-2021⟩ EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 17(3), pp. 1065-1089, ISSN: 1814-9324 Kageyama, M, Harrison, S P, Kapsch, M L, Lofverstrom, M, Lora, J M, Mikolajewicz, U, Sherriff-Tadano, S, Vadsaria, T, Abe-Ouchi, A, Bouttes, N, Chandan, D, Gregoire, L J, Ivanovic, R F, Izumi, K, Legrande, A N, Lhardy, F, Lohmann, G, Morozova, P A, Ohgaito, R, Paul, A, Richard Peltier, W, Poulsen, C J, Quiquet, A, Roche, D M, Shi, X, Tierney, J E, Valdes, P J, Volodin, E & Zhu, J 2021, ' The PMIP4 Last Glacial Maximum experiments : Preliminary results and comparison with the PMIP3 simulations ', Climate of the Past, vol. 17, no. 3, pp. 1065-1089 . https://doi.org/10.5194/cp-17-1065-2021 Climate of the Past, Vol 17, Pp 1065-1089 (2021) Climate of the Past, 2021, 17 (3), pp.1065-1089. ⟨10.5194/cp-17-1065-2021⟩ |
ISSN: | 1814-9324 1814-9332 |
DOI: | 10.5194/cp-17-1065-2021⟩ |
Popis: | The Last Glacial Maximum (LGM, ∼ 21 000 years ago) has been a major focus for evaluating how well state-of-the-art climate models simulate climate changes as large as those expected in the future using paleoclimate reconstructions. A new generation of climate models has been used to generate LGM simulations as part of the Paleoclimate Modelling Intercomparison Project (PMIP) contribution to the Coupled Model Intercomparison Project (CMIP). Here, we provide a preliminary analysis and evaluation of the results of these LGM experiments (PMIP4, most of which are PMIP4-CMIP6) and compare them with the previous generation of simulations (PMIP3, most of which are PMIP3-CMIP5). We show that the global averages of the PMIP4 simulations span a larger range in terms of mean annual surface air temperature and mean annual precipitation compared to the PMIP3-CMIP5 simulations, with some PMIP4 simulations reaching a globally colder and drier state. However, the multi-model global cooling average is similar for the PMIP4 and PMIP3 ensembles, while the multi-model PMIP4 mean annual precipitation average is drier than the PMIP3 one. There are important differences in both atmospheric and oceanic circulations between the two sets of experiments, with the northern and southern jet streams being more poleward and the changes in the Atlantic Meridional Overturning Circulation being less pronounced in the PMIP4-CMIP6 simulations than in the PMIP3-CMIP5 simulations. Changes in simulated precipitation patterns are influenced by both temperature and circulation changes. Differences in simulated climate between individual models remain large. Therefore, although there are differences in the average behaviour across the two ensembles, the new simulation results are not fundamentally different from the PMIP3-CMIP5 results. Evaluation of large-scale climate features, such as land–sea contrast and polar amplification, confirms that the models capture these well and within the uncertainty of the paleoclimate reconstructions. Nevertheless, regional climate changes are less well simulated: the models underestimate extratropical cooling, particularly in winter, and precipitation changes. These results point to the utility of using paleoclimate simulations to understand the mechanisms of climate change and evaluate model performance. |
Databáze: | OpenAIRE |
Externí odkaz: |