Intraspecies diversity and genome-phenotype-associations in Fructilactobacillus sanfranciscensis
Autor: | Matthias A. Ehrmann, Rudi F. Vogel, Esther Rogalski |
---|---|
Rok vydání: | 2020 |
Předmět: |
Sucrose
Lactobacillus sanfranciscensis Biology Microbiology Fructokinase Genome Maltose phosphorylase 03 medical and health sciences chemistry.chemical_compound Xylose metabolism Bacterial Proteins Genome Size Multienzyme Complexes NADH NADPH Oxidoreductases Phylogeny Triticum 030304 developmental biology Comparative genomics 0303 health sciences Xylose 030306 microbiology Pan-genome Fructose Biodiversity Bread biology.organism_classification chemistry Biochemistry Lactobacillaceae Genome Bacterial |
Zdroj: | Microbiological research. 243 |
ISSN: | 1618-0623 |
Popis: | In this study the intraspecies diversity of Fructilactobacillus (F.) sanfranciscensis (formerly Lactobacillus sanfranciscensis) was characterized by comparative genomics supported by physiological data. Twenty-four strains of F. sanfranciscensis were analyzed and sorted into six different genomic clusters. The core genome comprised only 43,14 % of the pan genome, i.e. 0.87 Mbp of 2.04 Mbp. The main annotated genomic differences reside in maltose, fructose and sucrose as well as nucleotide metabolism, use of electron acceptors, and exopolysacchride formation. Furthermore, all strains are well equipped to cope with oxidative stress via NADH oxidase and a distinct thiol metabolism. Only ten of 24 genomes contain two maltose phosphorylase genes (mapA and mapB). In F. sanfranciscensis TMW 1.897 only mapA was found. All strains except those from genomic cluster 2 contained the mannitol dehydrogenase and should therefore be able to use fructose as external electron acceptor. Moreover, six strains were able to grow on fructose as sole carbon source, as they contained a functional fructokinase gene. No growth was observed on pentoses, i.e. xylose, arabinose or ribose, as sole carbon source. This can be referred to the absence of ribose pyranase rbsD in all genomes, and absence of or mutations in numerous other genes, which are essential for arabinose and xylose metabolism. Seven strains were able to produce exopolysaccharides (EPS) from sucrose. In addition, the strains containing levS were able to grow on sucrose as sole carbon source. Strains of one cluster exhibit auxotrophies for purine nucleotides. The physiological and genomic analyses suggest that the biodiversity of F. sanfranciscensis is larger than anticipated. Consequently, "original" habitats and lifestyles of F. sanfranciscensis may vary but can generally be referred to an adaptation to sugary (maltose/sucrose/fructose-rich) and aerobic environments as found in plants and insects. It can dominate sourdoughs as a result of reductive evolution and cooperation with fructose-delivering, acetate-tolerant yeasts. |
Databáze: | OpenAIRE |
Externí odkaz: |