Weighted ultrafast diffusion equations : from well-posedness to long-time behaviour

Autor: Filippo Santambrogio, Francesco S. Patacchini, Mikaela Iacobelli
Přispěvatelé: Durham University, Carnegie Mellon University [Pittsburgh] (CMU), Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Zdroj: Archive for rational mechanics and analysis, 2019, Vol.232(3), pp.1165-1206 [Peer Reviewed Journal]
Archive for Rational Mechanics and Analysis, 232 (3)
ISSN: 0003-9527
1432-0673
Popis: In this paper we devote our attention to a class of weighted ultrafast diffusion equations arising from the problem of quantisation for probability measures. These equations have a natural gradient flow structure in the space of probability measures endowed with the quadratic Wasserstein distance. Exploiting this structure, in particular through the so-called JKO scheme, we introduce a notion of weak solutions, prove existence, uniqueness, BV and H1 estimates, L1 weighted contractivity, Harnack inequalities, and exponential convergence to a steady state.
Archive for Rational Mechanics and Analysis, 232 (3)
ISSN:0003-9527
ISSN:1432-0673
Databáze: OpenAIRE