IMPEDANCE-BASED STRUCTURAL HEALTH MONITORING AND KOHONEN NETS FOR DAMAGE DETECTION

Autor: Alexsander Lindolfo de Lima, Stanley Washington F. Rezende, Quintiliano S. S. Nomelini, Jose Waldemar Silva, Roberto M. Finzi Neto, Carlos A. Gallo, Jose dos Reis V. Moura Jr
Jazyk: angličtina
Rok vydání: 2023
Předmět:
DOI: 10.5281/zenodo.8019381
Popis: Several expensive structures have been developed in the past century. Thus, corrective, preventive, and predictive maintenance techniques were proposed based on the ability to investigate a monitoring parameter up to the inflection point of the component's useful life. Consequently, several structural health assessment methodologies have been implemented using smart sensors. In general, damage classification models in this kind of monitoring have a limitation due to the influence of temperature on piezoelectric sensors, requiring a temperature compensation step (normalization). In this work, a Kohonen map is used with a Principal Component Analysis to demonstrate the potential of this kind of model in eliminating the compensation step and classifying the damage correctly. For the case study, an aluminum beam instrumented with a PZT (Pb-lead Zirconate Titanate) patch was used and subjected to different temperatures in a climatic chamber in 11 levels of temperature. The test structure had thickness removals with seven levels at the opposite end of the beam with the sensor. Several parameters of the models were changed and demonstrated the availability to use the proposed methodology as an approach to the temperature-independent damage model. In conclusion, this type of result enables the use of this model in real structural monitoring.
Impedance-based Structural Health Monitoring and Kohonen Nets for Damage Detection Alexsander Lindolfo de Lima, Stanley Washington F. Rezende, Quintiliano S. S. Nomelini, Jose Waldemar Silva, Roberto M. Finzi Neto, Carlos A. Gallo and Jose dos Reis V. Moura Jr, Published in International Journal of Advances in Engineering & Technology (IJAET), Volume 16 Issue 2, pp. 20-34, April 2023.
{"references":["O. ABDELJABER & O. AVCI, Nonparametric structural damage detection algorithm for ambient vibration response: utilizing artificial neural networks and self-organizing maps. Journal of Architectural Engineering, 22(2), 04016004, 2016.","G. A. ANGULO-SAUCEDO, J. X. LEON-MEDINA, W. A. PINEDA-MUÑOZ, M. A. TORRES-ARREDONDO and D. A. TIBADUIZA, Damage Classification Using Supervised Self-Organizing Maps in Structural Health Monitoring. Sensors, 2022.","F. G. BAPTISTA, A Contribution to Structural Health Monitoring Systems Based on Electromechanical Impedance (In Portuguese: Uma Contribuição aos Sistemas de Monitoramento de Integridade Estrutural Baseados na Impedância Eletromecânica), Ph.D. thesis, State University Paulista, 2010.","I. BUETHE, P. KRAEMER and C. P. FRITZEN, Applications of self-organizing maps in structural health monitoring. In Key Engineering Materials (Vol. 518, pp. 37-46). Trans Tech Publications Ltd, 2012.","B. P. BARELA, Machine learning modeling applied to structural health monitoring systems (In Portuguese: Modelagem com aprendizado de máquina aplicada aos sistemas de monitoramento de integridade estrutural). Master thesis, Federal University of Goiás, 2020.","A. P. BRAGA, A. P. L. F. CARVALHO and T. B. LUDERMIR, Artificial Neural Networks: Theory and Applications (In Portuguese: Redes Neurais Artificiais: Teoria e Aplicações). 1. ed. Brasil: LTC Editora, 2000.","F. C. COELHO, Scientific Computing with Python (In Portuguese: Computação Científica com Python). [S.l.]: Lulu. com, 2007.","M. DURVAL, S.W.F. REZENDE, B.P. BARELLA, J.P.M. BENTO, J.R.V. MOURA Jr, Damage Classification Using Self-Organizing Maps (SOM) Associated to Electromechanical Impedance-based Structural Health Monitoring (In Portuguese: Classificação De Danos Por Meio De Mapas Auto-Organizáveis (Som) Associado Ao Monitoramento Da Integridade Estrutural Baseado Na Impedância Eletromecânica). Enciclopédia Biosfera, v. 15, p. 30-42, 2018.","F.A. FREITAS, R.M. JAFELICE, J.W. SILVA, et al. A new data normalization approach applied to the electromechanical impedance method using adaptive neuro-fuzzy inference system. J Braz. Soc. Mech. Sci. Eng. 43, 475, 2021. https://doi.org/10.1007/s40430-021-03186-z.","D.R. GONÇALVES, J.R.V. MOURA Jr, P.E.C. PEREIRA, M.V.A. MENDES, H.S. DINIZ-PINTO. Indicator kriging for damage position prediction by the use of electromechanical impedance-based structural health monitoring. Comptes Rendus. Mécanique, v. 349, p. 225-240, 2021.","S. HAYKIN, Neural Networks, and Learning Machines. 3. ed. Canada: Pearson, 2009.","P. OLIVEIRA Jr, S. CONTE, D. M. D'ADDONA, P. AGUIAR and F. BAPSTISTA, An improved impedance-based damage classification using self-organizing maps. Procedia CIRP, 88, 330-334, 2020.","J. R. V. MOURA Jr, V. STEFFEN Jr, Impedance-based Health Monitoring for Aeronautic Structures using Statistical Meta-modeling. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, v. 17, p. 1023-1036, 2006.","J. R. V. MOURA Jr, A contribution to structural health monitoring systems applied to aeronautical and space structures (In Portuguese: Uma contribuição aos sistemas de monitoramento de integridade estrutural aplicada a estruturas aeronáuticas e espaciais), PhD thesis, Federal University of Uberlândia, 2008.","T. KOHONEN, Self-Organizing Maps. [S.l.]: Springer, 2001.","C. LIANG, F. P. SUN and C. A. ROGERS, Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer, Journal of intelligent material systems and structures, TECHNOMIC PUBLISHING CO., INC. , 51 New Holland Ave., Box 3535, Lancaster, PA . . . , v. 8, n. 4, p. 335–343, 1997.","H. J. LIM, et al, Impedance-based damage detection under varying temperature and loading conditions, NDT & E International, Elsevier, v. 44, n. 8, p. 740-750, 2011.","C. E. B. MAIO, Structural health monitoring techniques by the use of piezoelectric sensors and actuators (In Portguese: Técnicas para monitoramento de integridade estrutural usando sensores e atuadores piezoelétricos). Master thesis, University of Sao Paulo, 2011.","A. C. MÜLLER and S. GUIDO, Introduction to machine learning with Python: a guide for data scientists, \"O'Reilly Media, Inc.\", New York, 2016.","E. OJA and S. KASKI, KOHONEN MAPS. 1. ed. Finland: ELSEVIER, 1999.","L.V. PALOMINO, J.R.V. MOURA Jr, K.M. TSURUTA, D.A. RADE, V. STEFFEN Jr, Impedance-based health monitoring and mechanical testing of structures. Smart Structures and Systems, v. 7, p. 15-25, 2011.","L.V. PALOMINO, K.M. TSURUTA, J.R.V. MOURA Jr, D.A. RADE, V. STEFFEN Jr, D.J. INMAN, Evaluation of the influence of sensor geometry and physical parameters on impedance-based structural health monitoring. Shock and Vibration, v. 19, p. 811-823, 2012.","S.W.F. REZENDE, B.P. BARELLA, J.R.V. MOURA, et al. ISHM for fault condition detection in rotating machines with deep learning models. J Braz. Soc. Mech. Sci. Eng. 45, 212, 2023. https://doi.org/10.1007/s40430-023-04129-6S.","J. G. SABIN, M. F. FERRÃO and J. C. FURTADO, Multivariate analysis applied to the identification of antidepressant drugs. Part ii: Principal component analysis (PCA) and the simca classification method (In Portuguese: Análise multivariada aplicada na identificação de fármacos antidepressivos. Parte ii: Análise por componentes principais (PCA) e o método de classificação simca). Revista Brasileira de Ciências Farmacêuticas, SciELO Brasil, v. 40, p. 387–396, 2004.","R. N. F. SILVA, Structural health monitoring using the electromechanical impedance technique applied to concrete structures (In Portuguese: Monitoramento de integridade estrutural utilizando a técnica da impedância eletromecânica aplicada em estruturas de concreto), PhD thesis, Federal University of Uberlândia, 2017.","D. A. TIBADUIZA, M. A TORRES-ARREDONDO, L. E. MUJICA, J. RODELLAR and C. P. FRITZEN, A study of two unsupervised data-driven statistical methodologies for detecting and classifying damages in structural health monitoring. Mechanical Systems and Signal Processing, Elsevier, v. 41, p. 467-484, 2013.","G. VETTIGLI, MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map. 2018. Available in: https://github.com/JustGlowing/minisom/"]}
Databáze: OpenAIRE