On the approximation numbers and spectral eigenvalues

Autor: Imen Bhouri, Haı¨kel Skhiri
Rok vydání: 2009
Předmět:
Zdroj: Linear Algebra and its Applications. 430:847-854
ISSN: 0024-3795
DOI: 10.1016/j.laa.2008.09.031
Popis: In the present paper, we characterize the approximation numbers orbits of conjugation of a bounded operator T in an Hilbert space and there relationship with the eigenvalues of T . As a consequence we obtain that for normal operators | λ n ( T ) | = inf { ρ ( T - L ) : TL = LT and dim R ( L ) n } , where λ n ( T ) is the n-th eigenvalue of T . We illustrate with an example that the equality doesn’t hold in general.
Databáze: OpenAIRE