Spatio-Temporal Contextualization of Queries for Microtexts in Social Media: Mathematical Modeling

Autor: Joo-Man Han, Jason J. Jung, Luca Carratore, Jae-Hong Park, O-Joun Lee, Francesco Piccialli, Eon-Ji Lee
Přispěvatelé: Park, J. -H., Lee, O. -J., Han, J. -M., Lee, E. -J., Jung, J. J., Carratore, Luca, Piccialli, F.
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: EUSPN/ICTH
Popis: In this paper, we present our ongoing project on query contextualization by integrating all possible IoT-based data sources. Most importantly, mobile users are regarded as the IoT sensors which can be the textual data sources with spatio-temporal contexts. Given a large amount of text streams, it has been difficult for the traditional information retrieval systems to conduct the searching tasks. The goal of this work is i ) to understand and process microtexts in social media (e.g., Twitter and Facebook), and ii ) to reformulate the queries for searching for relevant microtexts in these social media.
Databáze: OpenAIRE