Numerical Simulation of Crystalline Silicon Heterojunction Solar Cells with Different p-Type a-SiOx Window Layer
Autor: | Shui-Yang Lien, Chia-Hsun Hsu, Xiao-Ying Zhang, Yun-Shao Cho, Chang-Sin Ye, Hai-Jun Lin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Amorphous silicon
Control and Optimization Materials science heterojunction Band gap crystalline silicon Energy Engineering and Power Technology 02 engineering and technology Chemical vapor deposition 01 natural sciences lcsh:Technology law.invention chemistry.chemical_compound law 0103 physical sciences Solar cell Crystalline silicon Electrical and Electronic Engineering Silicon oxide Engineering (miscellaneous) 010302 applied physics Renewable Energy Sustainability and the Environment business.industry lcsh:T Heterojunction 021001 nanoscience & nanotechnology Volumetric flow rate silicon oxide solar cell chemistry Optoelectronics 0210 nano-technology business Energy (miscellaneous) |
Zdroj: | Energies, Vol 12, Iss 13, p 2541 (2019) Energies Volume 12 Issue 13 |
ISSN: | 1996-1073 |
Popis: | In this study, p-type amorphous silicon oxide (a-SiOx) films are deposited using a radio-frequency inductively-coupled plasma chemical vapor deposition system. Effects of the CO2 gas flow rate on film properties and crystalline silicon heterojunction (HJ) solar cell performance are investigated. The experimental results show that the band gap of the a-SiOx film can reach 2.1 eV at CO2 flow rate of 10 standard cubic centimeters per minute (sccm), but the conductivity of the film deteriorates. In the device simulation, the transparent conducting oxide and contact resistance are not taken into account. The electrodes are assumed to be perfectly conductive and transparent. The simulation result shows that there is a tradeoff between the increase in the band gap and the reduction in conductivity at increasing CO2 flow rate, and the balance occurs at the flow rate of six sccm, corresponding to a band gap of 1.95 eV, an oxygen content of 34%, and a conductivity of 3.3 S/cm. The best simulated conversion efficiency is 25.58%, with an open-circuit voltage of 741 mV, a short-circuit current density of 42.3 mA/cm2, and a fill factor of 0.816%. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |