Hidden regular variation for point processes and the single/multiple large point heuristic

Autor: Dombry, Clément, Tillier, Charles, Wintenberger, Olivier
Přispěvatelé: Laboratoire de Mathématiques de Besançon (UMR 6623) (LMB), Fédération Bourgogne Franche-Comté Mathématiques (BFC-Math ), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), TSI (TelecomParisTech), Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM UMR 8001), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université de Bourgogne (UB)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Probabilités, Statistiques et Modélisations (LPSM (UMR_8001)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2022
Předmět:
Zdroj: The Annals of Applied Probability. 32
ISSN: 1050-5164
DOI: 10.1214/21-aap1675
Popis: We consider regular variation for marked point processes with independent heavy-tailed marks and prove a single large point heuristic: the limit measure is concentrated on the cone of point measures with one single point. We then investigate successive hidden regular variation removing the cone of point measures with at most k points, k ≥ 1, and prove a multiple large point phenomenon: the limit measure is concentrated on the cone of point measures with k + 1 points. We show how these results imply hidden regular variation in Sko-rokhod space of the associated risk process, in connection with the single/multiple large point heuristic from Rhee et al. (2019). Finally, we provide an application to risk theory in a reinsurance model where the k largest claims are covered and we study the asymptotic behavior of the residual risk.
Databáze: OpenAIRE