Black holes quasinormal modes, Loop Quantum Gravity Immirzi parameter and nonextensive statistics
Autor: | Bráulio B. Soares, Edésio M. Barboza, Jorge Ananias Neto, Everton M. C. Abreu |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Physics
Nuclear and High Energy Physics Entropy (statistical thermodynamics) Immirzi parameter Tsallis statistics FOS: Physical sciences General Relativity and Quantum Cosmology (gr-qc) Loop quantum gravity Statistical mechanics lcsh:QC1-999 General Relativity and Quantum Cosmology lcsh:Physics Mathematical physics |
Zdroj: | Physics Letters Physics Letters B, Vol 798, Iss, Pp-(2019) |
Popis: | It is argued that, using the black hole area entropy law together with the Boltzmann-Gibbs statistical mechanics and the quasinormal modes of the black holes, it is possible to determine univocally the lowest possible value for the spin $j$ in the context of the Loop Quantum Gravity theory which is $j_{min}=1$. Consequently, the value of Immirzi parameter is given by $\gamma = \ln 3/(2\pi\sqrt{2})$. In this paper, we have shown that if we use Tsallis microcanonical entropy rather than Boltzmann-Gibbs framework then the minimum value of the label $j$ depends on the nonextensive $q$-parameter and may have values other than $j_{min}=1$. Comment: 8 pages, 2 figures, version accepted for publication in PLB |
Databáze: | OpenAIRE |
Externí odkaz: |