AMPA receptor auxiliary subunits emerged during early vertebrate evolution by neo/subfunctionalization of unrelated proteins
Autor: | Ramos-Vicente, David, Bayés, Àlex, Universitat Autònoma de Barcelona |
---|---|
Rok vydání: | 2020 |
Předmět: |
Protein family
Amino Acid Motifs Immunology AMPA receptor auxiliary subunit AMPA receptor Biology phylogeny Corrections TARP General Biochemistry Genetics and Molecular Biology ampa receptor auxiliary subunit Phylogenetics biology.animal Animals Humans Protein Interaction Domains and Motifs Amino Acid Sequence Receptors AMPA lcsh:QH301-705.5 Conserved Sequence Genome cornichon dispanin c General Neuroscience Glutamate receptor Vertebrate Sequence Analysis DNA shisa Biological Evolution Protein Subunits lcsh:Biology (General) Evolutionary biology Dispanin C Vertebrates Subfunctionalization Dispanin tarp Protein Binding Ionotropic effect |
Zdroj: | Open Biology r-IIB SANT PAU. Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau instname Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona Open Biology, Vol 10, Iss 10 (2020) r-IIB SANT PAU: Repositorio Institucional de Producción Científica del Instituto de Investigación Biomédica Sant Pau Institut dInvestigació Biomèdica Sant Pau (IIB Sant Pau) |
ISSN: | 2011-0839 2046-2441 |
Popis: | Altres ajuts: Career Integration Grant (ref. 304111), Ramón y Cajal Fellowship (RYC-2011-08391p), IEDI-2017-00822 In mammalian synapses, the function of ionotropic glutamate receptors is critically modulated by auxiliary subunits. Most of these specifically regulate the synaptic localization and electrophysiological properties of AMPA-type glutamate receptors (AMPARs). Here, we comprehensively investigated the animal evolution of the protein families that contain AMPAR auxiliary subunits (ARASs). We observed that, on average, vertebrates have four times more ARASs than other animal species. We also demonstrated that ARASs belong to four unrelated protein families: CACNG-GSG1, cornichon, shisa and Dispanin C. Our study demonstrates that, despite the ancient origin of these four protein families, the majority of ARASs emerged during vertebrate evolution by independent but convergent processes of neo/subfunctionalization that resulted in the multiple ARASs found in present vertebrate genomes. Importantly, although AMPARs appeared and diversified in the ancestor of bilateral animals, the ARAS expansion did not occur until much later, in early vertebrate evolution. We propose that the surge in ARASs and consequent increase in AMPAR functionalities, contributed to the increased complexity of vertebrate brains and cognitive functions. |
Databáze: | OpenAIRE |
Externí odkaz: |