BGK and Fokker-Planck models of the Boltzmann equation for gases with discrete levels of vibrational energy

Autor: Luc Mieussens, Julien Mathiaud
Přispěvatelé: Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA-CESTA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Journal of Statistical Physics
Journal of Statistical Physics, Springer Verlag, In press, ⟨10.1007/s10955-020-02490-7⟩
Journal of Statistical Physics, In press, ⟨10.1007/s10955-020-02490-7⟩
ISSN: 0022-4715
1572-9613
DOI: 10.1007/s10955-020-02490-7⟩
Popis: We propose two models of the Boltzmann equation (BGK and Fokker-Planck models) for rarefied flows of diatomic gases in vibrational non-equilibrium. These models take into account the discrete repartition of vibration energy modes, which is required for high temperature flows, like for atmospheric re-entry problems. We prove that these models satisfy conservation and entropy properties (H-theorem), and we derive their corresponding compressible Navier-Stokes asymptotics.
Journal of Statistical Physics, Springer Verlag
Databáze: OpenAIRE