Improving the algorithmic efficiency and performance of channel-based evolutionary algorithms

Autor: Mario García Valdez, Sergio Rojas-Galeano, Juan Luis Jiménez Laredo, Pedro A. Castillo, Juan-Julián Merelo Guervós
Přispěvatelé: Departamento de Arquitectura y tecnología de computadores, Universidad de Granada (UGR), Equipe Réseaux d'interactions et Intelligence Collective (RI2C - LITIS), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU), Instituto Tecnológico de Tijuana, Instituto Tecnológico de Tijuana [Tijuana], District University of Bogotá
Rok vydání: 2019
Předmět:
Zdroj: GECCO (Companion)
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2019, Jul 2019, Prague, Czech Republic
Popis: Concurrent evolutionary algorithms use threads that communicate via messages. Parametrizing the work in every thread and the way they communicate results is a major challenge in its design. In this paper we work with concurrent evolutionary algorithms implemented in Perl 6, and explore different options of single-thread evolution parametrization, communication and mixing of results, showing that scalability is achieved in a multi-core environment.
Databáze: OpenAIRE