Spin-polarized electrons in atomic layer materials formed on solid surfaces

Autor: Kazuyuki Sakamoto, Takahiro Kobayashi, Koichiro Yaji, Tatsuya Shishidou, Markus Donath
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Progress in Surface Science. :100665
ISSN: 0079-6816
Popis: In this review, we summarize the recent progress in the understanding of the spin-polarized electronic states in two-dimensional (2D) atomic layer materials (ALMs) formed on solid surfaces. The spin-polarized electronic states caused by the combination of spin-orbit coupling (SOC) with broken spatial inversion symmetry along the surface normal direction is one of the most exotic phenomena that appears on ALMs formed on solid surfaces as well as clean solid surfaces. The so-called Rashba-Bychkov (RB) effect that arises from the potential gradient induced by broken inversion symmetry was believed to be the main origin of these spin-polarized electronic states. However, the spin texture of most ALMs are different from that caused by the ideal RB effect. Due to the high impact of the spin-polarized electronic states of 2D materials in not only spin-related fundamental science but also in applications since they are the key concepts to realize future semiconductor spintronics devices, much efforts have been made to elucidate the origin of these peculiar spin textures. So far, the deviations in spin texture from the ideal one have been attributed to be induced by perturbation, such as entanglement of spin and orbital momenta. In this review, we first illustrate how the symmetry of the ALM's atomic structure can affect the spin texture, and then introduce that various spin textures, ranging from the RB-type and symmetry-induced type to spin textures that cannot be explained based on the origins proposed so far, can be simply induced by the orbital angular momentum. This review aims to provide an overview on the insights gained on the spin-polarized electronic states of ALMs and to point out opportunities for exploring exotic physical properties when combining spin and other physics, e.g. superconductivity, and to realize future spintronics-based quantum devices.
Databáze: OpenAIRE