Towards An Advanced Graphene-Based Magnetic Resonance Imaging Contrast Agent: Sub-acute Toxicity and Efficacy Studies in Small Animals

Autor: Kenneth R. Shroyer, Shruti Kanakia, Dung Minh Hoang, Jimmy Toussaint, William Moore, Youssef Zaim Wadghiri, Stephen Lee, Balaji Sitharaman, Sayan Mullick Chowdhury
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Scientific Reports
ISSN: 2045-2322
DOI: 10.1038/srep17182
Popis: Current clinical Gd3+-based T1 magnetic resonance imaging (MRI) contrast agents (CAs) are suboptimal or unsuitable, especially at higher magnetic fields (>1.5 Tesla) for advanced MRI applications such as blood pool, cellular and molecular imaging. Herein, towards the goal of developing a safe and more efficacious high field T1 MRI CA for these applications, we report the sub-acute toxicity and contrast enhancing capabilities of a novel nanoparticle MRI CA comprising of manganese (Mn2+) intercalated graphene nanoparticles functionalized with dextran (hereafter, Mangradex) in rodents. Sub-acute toxicology performed on rats intravenously injected with Mangradex at 1, 50 or 100 mg/kg dosages 3 times per week for three weeks indicated that dosages ≤50 mg/kg could serve as potential diagnostic doses. Whole body 7 Tesla MRI performed on mice injected with Mangradex at a potential diagnostic dose (25 mg/kg or 455 nanomoles Mn2+/kg; ~2 orders of magnitude lower than the paramagnetic ion concentration in a typical clinical dose) showed persistent (up to at least 2 hours) contrast enhancement in the vascular branches (Mn2+ concentration in blood at steady state = 300 ppb, per voxel = 45 femtomoles). The results lay the foundations for further development of Mangradex as a vascular and cellular/ molecular MRI probe.
Databáze: OpenAIRE