The ultrathin limit of improper ferroelectricity

Autor: Nordlander, J., Campanini, M., Rossell, M. D., Erni, R., Meier, Q. N., Cano, A., Spaldin, N. A., Fiebig, M., Trassin, M.
Přispěvatelé: Department of Materials [ETH Zürich] (D-MATL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Théorie de la Matière Condensée (TMC ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nature Communications, Vol 10, Iss 1, Pp 1-7 (2019)
Nature Communications
Nature Communications, Nature Publishing Group, 2019, 10, pp.5591. ⟨10.1038/s41467-019-13474-x⟩
Nature Communications, 10
ISSN: 2041-1723
Popis: The secondary nature of polarization in improper ferroelectrics promotes functional properties beyond those of conventional ferroelectrics. In technologically relevant ultrathin films, however, the improper ferroelectric behavior remains largely unexplored. Here, we probe the emergence of the coupled improper polarization and primary distortive order parameter in thin films of hexagonal YMnO3. Combining state-of-the-art in situ characterization techniques separately addressing the improper ferroelectric state and its distortive driving force, we reveal a pronounced thickness dependence of the improper polarization, which we show to originate from the strong modification of the primary order at epitaxial interfaces. Nanoscale confinement effects on the primary order parameter reduce the temperature of the phase transition, which we exploit to visualize its order-disorder character with atomic resolution. Our results advance the understanding of the evolution of improper ferroelectricity within the confinement of ultrathin films, which is essential for their successful implementation in nanoscale applications.
Nature Communications, 10
ISSN:2041-1723
Databáze: OpenAIRE