System Design for an Integrated Lifelong Reinforcement Learning Agent for Real-Time Strategy Games
Autor: | Indranil Sur, Zachary Daniels, Abrar Rahman, Kamil Faber, Gianmarco Gallardo, Tyler Hayes, Cameron Taylor, Mustafa Burak Gurbuz, James Smith, Sahana Joshi, Nathalie Japkowicz, Michael Baron, Zsolt Kira, Christopher Kanan, Roberto Corizzo, Ajay Divakaran, Michael Piacentino, Jesse Hostetler, Aswin Raghavan |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.48550/arxiv.2212.04603 |
Popis: | As Artificial and Robotic Systems are increasingly deployed and relied upon for real-world applications, it is important that they exhibit the ability to continually learn and adapt in dynamically-changing environments, becoming Lifelong Learning Machines. Continual/lifelong learning (LL) involves minimizing catastrophic forgetting of old tasks while maximizing a model's capability to learn new tasks. This paper addresses the challenging lifelong reinforcement learning (L2RL) setting. Pushing the state-of-the-art forward in L2RL and making L2RL useful for practical applications requires more than developing individual L2RL algorithms; it requires making progress at the systems-level, especially research into the non-trivial problem of how to integrate multiple L2RL algorithms into a common framework. In this paper, we introduce the Lifelong Reinforcement Learning Components Framework (L2RLCF), which standardizes L2RL systems and assimilates different continual learning components (each addressing different aspects of the lifelong learning problem) into a unified system. As an instantiation of L2RLCF, we develop a standard API allowing easy integration of novel lifelong learning components. We describe a case study that demonstrates how multiple independently-developed LL components can be integrated into a single realized system. We also introduce an evaluation environment in order to measure the effect of combining various system components. Our evaluation environment employs different LL scenarios (sequences of tasks) consisting of Starcraft-2 minigames and allows for the fair, comprehensive, and quantitative comparison of different combinations of components within a challenging common evaluation environment. Comment: The Second International Conference on AIML Systems, October 12--15, 2022, Bangalore, India |
Databáze: | OpenAIRE |
Externí odkaz: |