Altered expression of chemokines and their receptors at porcine maternal-fetal interface during early and mid-gestational fetal loss

Autor: Madhuri Koti, Chandrakant Tayade, Kasra Khalaj, Rami T. Kridli, Jocelyn M. Wessels, Mallikarjun Bidarimath
Rok vydání: 2016
Předmět:
Zdroj: Cell and Tissue Research. 366:747-761
ISSN: 1432-0878
0302-766X
Popis: Chemokines play a significant role in pregnancy, especially during embryonic attachment and placental development. During early pregnancy, immune cells are recruited extensively to the endometrium in several species including pigs. However, this recruitment is solely mediated by the presence of the conceptus in pigs making it a unique feature compared with other species (humans, primates and mice). To understand the biological significance of chemokine expression and immune cell recruitment in the context of fetal loss, we investigate a well-characterized porcine fetal loss model during the window of early pregnancy at gestational day (gd) 20 and mid-pregnancy (gd50). These periods coincide with 25-40 % of conceptus loss. Using targeted quantitative polymerase chain reaction and Western blot approaches, we screened a specific set of chemokines. Comparisons were made with endometrial lymphocytes (ENDO LY), endometrium and chorioallantoic membranes (CAM) associated with spontaneously arresting and healthy conceptus attachment sites (CAS). mRNA expression studies revealed an increased expression of CXCR3 and CCR5 in ENDO LY and of CXCL10, CXCR3, CCL5 and CCR5 in the endometrium associated with arresting CAS at gd20. DARC was decreased in the endometrium at gd50. CCL1 was increased in CAM associated with arresting CAS at gd50. Some of these differences were also noted at the protein level (CXCL10, CXCR3, CCL5 and CCR5) in the endometrium and CAM. CD45+ immunohistochemistry demonstrated a significantly higher localization in ENDO LY in the endometrium associated with healthy versus arresting counterparts. Most of these differences were observed in early pregnancy and might contribute towards a shift in immune cell functions.
Databáze: OpenAIRE