A novel spatial feature for the identification of motor tasks using high-density electromyography

Autor: Joan Francesc Alonso, Hamid Reza Marateb, Mónica Rojas-Martínez, Miguel Angel Mañanas, Mislav Jordanic
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
Jazyk: angličtina
Rok vydání: 2020
Předmět:
030506 rehabilitation
Engineering
Electromiografia
Speech recognition
0206 medical engineering
02 engineering and technology
Electromyography
lcsh:Chemical technology
Biochemistry
Article
Analytical Chemistry
mean shift
03 medical and health sciences
high-density electromyography
Robustness (computer science)
Pattern recognition
medicine
lcsh:TP1-1185
Biomechanics
Enginyeria biomèdica::Biomecànica [Àrees temàtiques de la UPC]
Myoelectric control
Mean-shift
Electrical and Electronic Engineering
prosthetics
Instrumentation
Prosthetics
Mean shift
medicine.diagnostic_test
business.industry
pattern recognition
Biomecànica
Linear discriminant analysis
High-density electromyography
020601 biomedical engineering
myoelectric control
Atomic and Molecular Physics
and Optics

3. Good health
Enginyeria biomèdica::Aparells mèdics::Biosensors [Àrees temàtiques de la UPC]
Identification (information)
Task (computing)
Feature (computer vision)
Pattern recognition (psychology)
0305 other medical science
business
Zdroj: Repositorio U. El Bosque
Universidad El Bosque
instacron:Universidad El Bosque
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Sensors; Volume 17; Issue 7; Pages: 1597
Sensors (Basel, Switzerland)
Recercat. Dipósit de la Recerca de Catalunya
instname
Sensors, Vol 17, Iss 7, p 1597 (2017)
Popis: Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.
Databáze: OpenAIRE