Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately?

Autor: Cristiana Tanase, Ana Maria Enciu, Elena Codrici, Ionela Daniela Popescu, Maria Dudau, Ana Maria Dobri, Sevinci Pop, Simona Mihai, Ancuța-Augustina Gheorghișan-Gălățeanu, Mihail Eugen Hinescu
Rok vydání: 2022
Předmět:
Zdroj: International Journal of Molecular Sciences
International Journal of Molecular Sciences, Vol 23, Iss 604, p 604 (2022)
ISSN: 1422-0067
DOI: 10.3390/ijms23020604
Popis: Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.
Databáze: OpenAIRE
Nepřihlášeným uživatelům se plný text nezobrazuje