A comparative study of pitch extraction algorithms on a large variety of singing sounds

Autor: Nathalie Henrich, Onur Babacan, Thierry Dutoit, Nicolas d'Alessandro, Thomas Drugman
Přispěvatelé: Circuit Theory and Signal Processing Laboratory, Université de Mons-Hainaut, GIPSA - Systèmes Linguistiques et Dialectologie (GIPSA-SLD), Département Parole et Cognition (GIPSA-DPC), Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Stendhal - Grenoble 3-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Henrich Bernardoni, Nathalie
Předmět:
FOS: Computer and information sciences
Sound (cs.SD)
Reverberation
Computer science
[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing
Speech recognition
[SHS.INFO]Humanities and Social Sciences/Library and information sciences
Feature extraction
Speech synthesis
02 engineering and technology
computer.software_genre
Computer Science - Sound
[SHS.INFO] Humanities and Social Sciences/Library and information sciences
pitch extraction
Voice analysis
030507 speech-language pathology & audiology
03 medical and health sciences
analyse de la voix chantée
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
Audio and Speech Processing (eess.AS)
singing analysis/synthesis
FOS: Electrical engineering
electronic engineering
information engineering

0202 electrical engineering
electronic engineering
information engineering

[SHS.LANGUE]Humanities and Social Sciences/Linguistics
Pitch contour
[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]
[SHS.LANGUE] Humanities and Social Sciences/Linguistics
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
synthèse
Voice
020201 artificial intelligence & image processing
Singing
0305 other medical science
[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
computer
Algorithm
extraction de la hauteur
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Electrical Engineering and Systems Science - Audio and Speech Processing
Zdroj: HAL
ICASSP 2013-Proceedings
ICASSP 2013-38th IEEE International Conference on Acoustics, Speech and Signal Processing
ICASSP 2013-38th IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, Vancouver, Canada. pp.1-5
ICASSP
Popis: International audience; The problem of pitch tracking has been extensively studied in the speech research community. The goal of this paper is to investigate how these techniques should be adapted to singing voice analysis, and to provide a comparative evaluation of the most representative state-of-the-art approaches. This study is carried out on a large database of annotated singing sounds with aligned EGG recordings, comprising a variety of singer categories and singing exercises. The algorithmic performance is assessed according to the ability to detect voicing boundaries and to accurately estimate pitch contour. First, we evaluate the usefulness of adapting existing methods to singing voice analysis. Then we compare the accuracy of several pitchextraction algorithms, depending on singer category and laryngeal mechanism. Finally, we analyze their robustness to reverberation.
Databáze: OpenAIRE