Neumann Li-Yau gradient estimate under integral Ricci curvature bounds

Autor: Xavier Ramos Olivé
Rok vydání: 2018
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 147:411-426
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/14213
Popis: We prove a Li-Yau gradient estimate for positive solutions to the heat equation, with Neumann boundary conditions, on a compact Riemannian submanifold with boundary ${\bf M}^n\subseteq {\bf N}^n$, satisfying the integral Ricci curvature assumption: \begin{equation} D^2 \sup_{x\in {\bf N}} \left( \oint_{B(x,D)} |Ric^-|^p dy \right)^{\frac{1}{p}} < K \end{equation} for $K(n,p)$ small enough, $p>n/2$, where $diam({\bf M})\leq D$. The boundary of ${\bf M}$ is not necessarily convex, but it needs to satisfy the interior rolling $R-$ball condition.
Databáze: OpenAIRE