LIGO’s quantum response to squeezed states

Autor: A. Fernandez-Galiana, K. Merfeld, J. R. Palamos, Aaron Buikema, C. C. Wipf, M. MacInnis, T. Mistry, N. Kijbunchoo, T. J. Massinger, T. Vo, Andrew Lundgren, N. Bode, T. R. Saravanan, Benno Willke, Jonathan Richardson, R. K. Hasskew, L. Xiao, K. D. Giardina, J. S. Kissel, A. P. Spencer, D. D. Brown, K. Kawabe, S. M. Aston, Carl Blair, C. Cahillane, P. Fulda, A. Pele, J. Hanks, S. Appert, S. T. Countryman, M. C. Heintze, P.H. Nguyen, D. Barker, Kevin M. Ryan, L. K. Nuttall, R. Macas, G. Billingsley, R. Gray, A. Mullavey, T. J. N. Nelson, N. A. Robertson, Y. K. Lecoeuche, J. G. Bartlett, K. Venkateswara, S. McCormick, D. C. Vander-Hyde, B. J. J. Slagmolen, S. Márka, R. Penhorwood, A. D. Viets, V. V. Frolov, H. Yamamoto, A. M. Baer, Robert J. McCarthy, K. Toland, David J. Ottaway, Haocun Yu, M. J. Szczepańczyk, Denis Martynov, Alena Ananyeva, Madeline Wade, J. Betzwieser, H. Overmier, J. Hanson, N. A. Holland, D. Sellers, K. Mason, H. Radkins, K. L. Dooley, C. M. Mow-Lowry, S. E. Dwyer, S. J. Cooper, Z. Márka, L. Sun, Lee McCuller, Hang Yu, Lisa Barsotti, William Parker, J. D. Jones, R. Mittleman, Xin Chen, C. Di Fronzo, Patrick Godwin, D. Bhattacharjee, G. Vajente, A. Effler, B. Lantz, T. Etzel, D. Schaetzl, Eyal Schwartz, J. C. Driggers, R. M. S. Schofield, P. Booker, Kipp Cannon, Richard J. Abbott, K. E. Ramirez, Rana X. Adhikari, D. C. Coyne, T. Hardwick, Timothy Evans, A. F. Brooks, P. J. King, C. M. Compton, J. McIver, J. R. Smith, R. Bork, A. A. Ciobanu, G. Venugopalan, Sebastien Biscans, J. Feicht, Terry G. McRae, C. Adams, C. L. Romel, A. L. Urban, G. Mendell, Simone Mozzon, C. Osthelder, M. Kasprzack, M. Fyffe, J. H. Romie, K. R. Corley, K. A. Thorne, R. M. Blair, D. Sigg, S. W. Ballmer, Rainer Weiss, P. J. Veitch, R. Gustafson, Slawomir Gras, P. B. Covas, David E. McClelland, J. Zweizig, M. Lormand, E. L. Merilh, J. Warner, G. Moreno, S. Kandhasamy, B. Sorazu, B. K. Berger, J. Liu, M. E. Zucker, B. A. Weaver, J. G. Rollins, M. Tse, D. M. Macleod, M. Ball, J. A. Giaime, A. F. Helmling-Cornell, C. Whittle, A. Bramley, J. Oberling, M. Pirello, M. P. Ross, Y. Asali, Peter Fritschel, L. E. Sanchez, G. Traylor, S. Soni, C. I. Torrie, Douglas Davis, Nergis Mavalvala, C. J. Perez, R. L. Ward, E. Goetz, G. L. Mansell, Michael Thomas, Koji Arai, E. J. Sanchez, A. C. Green, K. Kuns, C. Gray, T. J. Shaffer, J. N. Leviton, K. A. Strain, S. Karki, L. E. H. Datrier, S. Banagiri, Richard J. Oram, C. Vorvick, E. K. Gustafson, Fabrice Matichard, E. Payne, T. Sadecki, M. Landry, F. Meylahn, C. Austin, R. L. Savage, M. Laxen, L. Zhang, P. Thomas, Rajesh Kumar, K. Riles, G. Valdes, Roman Schnabel, F. Clara, J. S. Areeda, B. B. Lane, Matthew Evans
Rok vydání: 2021
Předmět:
Zdroj: Physical Review D
ISSN: 2470-0029
2470-0010
Popis: Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and -- for the first time -- give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors.
24 pages, 5 figures
Databáze: OpenAIRE