Linear stability of a nonorthogonal axisymmetric stagnation flow on a rotating cylinder
Autor: | Faïçal Nait Bouda, Mustapha Amaouche, Hamou Sadat |
---|---|
Přispěvatelé: | Laboratoire de Physique Théorique (LPT), Université Abderrahmane Mira [Béjaïa], Laboratoire d'études thermiques (LET), Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Mécanique et d'Aérotechnique [Poitiers] (ISAE-ENSMA)-Université de Poitiers, Université de Poitiers-Ecole Nationale Supérieure de Mécanique et d'Aérotechnique [Poitiers] (ISAE-ENSMA)-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2006 |
Předmět: |
Fluid Flow and Transfer Processes
Physics Stagnation temperature Mechanical Engineering Computational Mechanics Reynolds number Mechanics Condensed Matter Physics Stagnation point 01 natural sciences 010305 fluids & plasmas Physics::Fluid Dynamics 010101 applied mathematics symbols.namesake Classical mechanics Flow (mathematics) Mechanics of Materials 0103 physical sciences [PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] symbols Cylinder 0101 mathematics Navier–Stokes equations Stagnation pressure Linear stability |
Zdroj: | Physics of Fluids Physics of Fluids, American Institute of Physics, 2006, 18 (124101), pp.1-13. ⟨10.1063/1.2403179⟩ |
ISSN: | 1089-7666 1070-6631 |
DOI: | 10.1063/1.2403179 |
Popis: | The present analysis deals with the onset of instability in an axisymmetric stagnation flow obliquely impinging on a uniformly rotating circular cylinder. The basic flow is described by an exact solution of the Navier-Stokes equations, discovered by Weidmann and Putkaradze [Eur. J. Mech. B/Fluids 22, 123 (2003)]. An eigenvalue problem for the linear stability is formulated, regardless of the free stream obliqueness, and then solved numerically by means of a collocation method using Laguerre’s polynomials. It is established that the basic stagnation flow is stable for sufficiently high Reynolds numbers. This is in conformity with the unconditional linear stability of two-dimensional Hiemenz stagnation flow. Instability occurs for Reynolds numbers smaller than some threshold value that increases with the rotation rate of the cylinder. At criticality, the flow undergoes a Hopf bifurcation, leading then to an oscillatory secondary motion. |
Databáze: | OpenAIRE |
Externí odkaz: |